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Analysis for a Planar 3 Degree-of-Freedom Parallel Mechanism 
with Actively Adjustable Stiffness Characteristics 

Whee-Kuk Kim*, Jun-Yong Lee* and Byung Ju Yi** 
(Received September 4, 1996) 

A planar three degree-of-freedom parallel manipulator has been extensively studied as the 
fundamental example of general parallel manipulators. It is proven from previous work(Kim, 
et. al., 1996) that when three identical joint compliances are attached to the three base joints of 
the mechanism in its symmetric configurations, this mechanism possesses a completely decou- 
pied compliance characteristic at the object space, which is the important operational require- 
ment for an RCC device. In this work, we are concerned with the adjustability of the output 
compliance matrix of this mechanism, by employing redundancy on either joint compliances or 
on actuators. Two approaches are suggested to achieve this purpose, in the first approach, the 
:stiffness modulation is achieved through purely redundant passive springs or decoupled feed- 
back stiffness gains. In the second approach, stiffness modulation is achieved through antagonis- 
tic actuation of the system actuators. General stiffness models are derived for both cases. Based 
on these stiffness models, stiffness modulation algorithms are formulated. The capability of 
actively adjustable stiffness will be very effective in several robotic applications. 

Key Words: Remote Center Compliance(RCC),  Planar Parallel Mechanism, Antagonistic 
Stiffness, Compliance Modulation, Adjustable Stiffness. 

I. Introduct ion  

Tasks such as electronic part assembly requir- 
ing high precision cannot be successfully perfor- 
med by position-controlled robot manipulators 
due to their limited precision. Other factors that 
hinder successful assembly operations include 
imprecise position and/or  orientation of the 
assembly bed, position sensor errors of automated 
assembly systems, non-uniformity of assembly 
parts, and non-rigidity of real bodies. Conse- 
quemly, jamming or wedging occurs quite often 
during assembly operation, which increases task 
completion time. 

To cope with these problems, various control 
schemes have been proposed: force feedback con- 
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trol via force/torque sensor(McCallion, et. al., 
1980), compliance model based control(Cutkos- 
ky, et. al., 1989; Peshkin, 1990), and compliance 
control using compliance devices such as Remote 
Center of Compliance(RCC) devices(Whitney, 
1986; Brussel, et. al., 1986), compliant work sta- 
tions, or using compliance effects such as air or 
gas stream, and magnetic force. In general, using 
passive compliance devices is cost-effective and 
increases the bandwidth and stability of the sys- 
tem, compared to control methods using force 
-feedback. Particularly, RCC devices among vari- 
ous compliance devices have been popularly em- 
ployed in various assembly tasks in automation 
industry. 

However, since most currently existing RCC 

devices have a fixed structure, they cannot adjust 
their compliance characteristics according to con- 
tinuously changing operational conditions. There- 
fore, RCC devices with actively adjustable com- 
pliance characteristics are discussed in this work. 
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Recently, parallel mechanisms have been 

proposed as a candidate RCC device. Two paral- 

lel mechanisms (i. e., 3 DOF planar and spherical 

mechanism) have been proposed for this purpose. 

It has been shown that each of  these mechanisms 

has an PCC point in its symmetric configurations 

(Kim, el. al., 1996a and 1996b). In order for these 

mechanisms to have the desired operational com- 

pliance characteristics at the RCC point, joint  

compliances can be adjusted either by properly 

replacing joint  compliances with those having 

different magnitude, or by actively controlling 

compliance at joints utilizing pneumatic cylin- 

ders, for example. These functions are advantages 

of parallel devices over current RCC devices. 

Further, we claim that when redundant joint  

compliances are attached to those parallel mecha- 

nisms symmetrically, the adjustabili ty of their 

RCC characteristics is improved. Two approaches 

are proposed. In the first approach, adaptable 

RCC characteristics are achieved purely by em- 

ploying redundant passive or feedback compli- 

ance. In the second approach, it is achieved by 

antagonistic redundant actuation among system 

actuators. 

This paper is organized as follows. Initially, in 

Sec. 2, first- and second-order  kinematic analysis 

for the proposed planar and spherical mecha- 

nisms are described. Then, using these kinematic 

models, the output compliance matrices due to 

redundant joinl  compliances are obtained for 

these mechanisms. In Sec. 3, we derive a compli- 

ance model created by the internal forces due to 

redundant actuation among the system actuators. 

Based on the compliance model, a load distribu- 

tion method is proposed to create the desired 

RCC characteristics. Simulations for both cases 

are carried out to corroborate the proposed the- 

ory. Laslly, we draw conclusions. 

2. Modulation of Output Compliance 
Matrix Using Redundant Joint 

Compliances 

2.1. K~nematics of a planar 3 DOF parallel 

mechanism (Kang, et. al., 1990) 
The mechanism proposed in this paper consists 

l* / /  / i3 ~ ", h 

Fig. 1 A Planar 3 Degrees of Freedom Mechanism 

of three subchains which connect the platform to 

the ground as shown in Fig. 1. Each subchain 

possesses three joints and two links, r~n denotes 

the joint  angle of the nth joint  of the r th  sub- 

chain. Also, Tl~ denotes the link length of the nth 

link of the r th  subchain. Let u ~  (x y r  repre- 

sent the center location of  the upper platform, and 

let ~b=  (rr r~2 r~3) T represent the joint  angles of  

the r th  serial subchain. Then, the first- and 

second-order  kinematic relations between the two 

vectors are described by (Freeman, et. al., 1988) 

U=[TGg]r~,  r = l ,  2, 3 (1) 

iJ = [ rGg] r~" -[- r~  T [rHgr ] r~ (2) 

where [~G~] and [~Hg~] represent the first- and 

second-order  kinematic influence coefficient 

matrices, respectively. Assuming that [~,Gg] is not 

singular, the inverse relation of the matrix is given 

by 

,.,~ = [,.Gg]-~ u (3) 

Here, we define ~b, ~,~, ~b~ as the vectors which 

respectively consist of the three base joints, three 

second joints, and three third joints of the three 

-chain system. Each vector is given by 

~b =: (1r 2r ar r (4) 

~ m =  (I~2 2~2 3(~2) T (5) 

and 

~t = (1r 2r 3r T (6) 

If we consider ~b as the active input, the first 

order kinematic relation between the input 

vector and output vector can be obtained as 

~b =:[ G~] ti (7) 
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where 

[C~]=[ 

Here r G~l ' Li ~OJl; 

Assuming that 

r Gul L2 ~j,: (8) 
r GUl J 
L3 CJt; 

denotes the first row of [~Gg]-k 
[G~] is non singular, the inverse 

relation of Eq. (7) is 

ft : [ Gg] ~ b (9) 

where 

[Gg]=[Cu~] -t (10) 

Likewise, the first-order kinematic relations for 
~m and ~t are obtained respectively as 

~m=[Gum] ti ( l l )  

~ , = [ G ~ ]  ti (12) 

where 

L 0J2: 

[Gum]= r2G ul-' L ~]2: (13) 
r Gul L3 0J2; 

[1G013: 
[Gut] = [zG,]3; (14) 

[~G~]3~ 
The proposed mechanism possesses nine joints. 

The minimum number of actuating joints is decid- 
ed according to the system mobility. Since the 
mobility of  the system is 3, at least, three joints 
should be activated to operate the mechanism. Let 
~o be the independent joint vector ( ~ ) ,  and let 
the remaining joints (~ r, ~tr) r be denoted by 
the dependent joint vector (~p). Then, the follow- 
ing relations are derived from Eqs. (7), (1 1), and 
(12): 

~m=[G m][Gg]~b=[G~a]~b (15) 

~, =[G~'] [Gg] ~o=[G~'] ~ (16) 

Now, the f irst-order kinematic relation 
between the dependent joint vector and the in- 
dependent joint vector is obtained by combining 
Eqs. (15) and (16), as below: 

~ , :  [ G~] ~,~ (17) 

where 

[ c t ]  = [ [GQ ] (18/ 
[ Gg] 

I_ 

Meanwhile, the inverse relation of Eq. (2) is 
described by 

r ~ =  [~Gg] -~ / /+  u r [ rH~]  ti (19) 

where 

U --T U - t  U [~HY~]=-[~Go] ([rGo] ~ �9 
[rG'r (20) 

The notation 'o' in Eq. (20) denotes a general- 
ized scalar dot product defined (refer to the 
Appendix). 

The second-order kinematic relations between 
each minimum set and the output vector are given 
by 

6 b : [ G g ] - l / / +  (tr[ nubu] lJ (21) 

~ra : [GmU] -1 / /+  ar[Hmu] ft (22) 

and 

where 

and 

6, =[G~] 'U + a~[H'~] a (23) 

I u - [ 1  

[,H~o],;, 
[ H # . ] =  f H  " ~ '  1_2 00Jh: 

r /_[u 1 
L3 00J 1;; 

L1 00]2:: 

[H~]= [~Hgo];::' 
r H u ] , L3 00J2:: 

(24) 

(25) 

I r Hul ~1 
L1 ~J3:; 

u - I  [ H ~ ]  = [2H~o]3= (26) 

[3Hoo]3= 
The inverse relation of Eq. (21) is obtained as 

l /=  [GaU] 6a ~- ~ar[Hga] ~a (27) 

where 

GU T a t/ [ H g a ] = -  ([Gg]o ([ a] [H~] [Ga] ) )  (28) 

Substituting Eqs. (9) and (27) into Eqs. (22) 
and (23), and rearranging results in 

4 , , :  [G~] 6a + ~ a r [ H ~ ]  ~a (29) 
4, = [ cat] 6o + ~ J[U,'a] ~ o (30) 

where 

m u T m o a [H2a]=[Ga] [ - ( [ G ~ ]  [Hg,]) 
+ [ H~m] ] [ Gg] (31) 

H t U T t o a [ aa] :[Ga]  [ - - ( [ G a ]  [Hu~u]) 

+ [ H~]][ Gg] (32) 
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Finally, combining Eqs. (29) and (30) results 
in the following relation: 

~;P = [ GPa] ~'a ~- (~aT[ HaPa] r (33) 

where 

[H~o] = I 
[H~] 
[Hat] ] (34) 

L 

2.2 Output compliance model 
Let r = ( v l  r2 "" r~)r and f = ( f ~ f 2 " " f ~ )  r b e  

the input torque vector and the externally applied 
force vector, respectively. From Eq. (9), the 
differential relation between the output vector and 
the input vector can be expressed as 

au=[G~] a ~  (35) 
Since the following relation holds from the 

virtual work principle, 

d ~ ' r  = d u f f  (36) 

substituting Eq. (36) into Eq. (35) results in 

r = [ G g ] r f  (37) 

Provided that [C~r and [C~]  represent the 
compliance matrices for the input vector and the 
output w~ctor, respectively, the following relations 
hold: 

a ~ = [ C ~ ] r  (38) 

8u [C~,,]F (39) 

The compliance matrix for the input vector ~ 

: (1r 2~bl 3~)1)T is given by 

[Cr162 0 C2r 0 (40) 

0 0 C3r 

Substituting Eqs. (37) and (38) into Eq. (35) 
results it:, the following relation 

= [ G ~ ] [ C ~ ] r  (41) 
=[ C~][ C~][ C"~ i 
=[c~]f 

where the output compliance matrix is defined by 

[ C,,]  = [ Gg][ Co,][ G2] r (42) 

Due to the inverse relation between the stiffness 
matrix and the compliance matrix, the stiffness 
matrix in the output space is expressed as below: 

[K,,,,]: ( [Gg][Kr162 r) - '  (43) 
where 

[Kuu] = [ C~u]-' (44) 

[K,, ]  = [ C~,r (45) 

The compliance matrix should be diagonal at 
an RCC point, which allows a completely decou- 
pied operation among the three outpm directions 
of  the given parallel mechanism. For the compli- 
ance matrix of Eq. (42) to be diagonal, the off 
-diagonal terms of (42) should be zero. The 
following Eq. (46) represents this condition 
(Kim, et. al., 1996): 

Cxr = [ A ]  Cr = 0 (46) 

Cyr C~ 0 

where 

A u  AI~ A13 ] 
[ A ] =  A2~ A22 A23[ (47) 

Aal A32 A33 ! j 

Since the magnitude of each joint compliance is 
not zero, the above relation holds only when the 
determinant of A is zero. The sufficient condi- 
tions to satisfy this has been investigated (Kim, et. 
al., 1996a and 1996b). As the first condition, the 
mechanism should maintain symmetric configura- 
tions. As the second condition, three joint compli- 
ances should be attached at the same location of  
each chain (i. e, the base location of each chain) 
and they must have the same magnitude. In other 
words, when the mechanism satisfied the follow- 
ing relations 

l l~=zln--aln=ln, for n = l ,  2, 3 
2 4 

2 r 1 6 2  ~ r 1 6 2  

,r162162 ,r162162 

C~b-: Cl~l : C2~1 : C3~l (48) 

the mechanism has an RCC point at the middle of 
the moving ternary, at which the compliance 
matrix is completely diagonal and has the follow- 
ing characteristics: 

Cxx~ = Cyy~ = 2 ff (S  1) Z C~ ~ (49) 

C , , -  /?(S~)~ C r 1 6 2  ,~ (50) 



412 Whee Kuk Kim, Jun Yong Lee and Byung Ju Yi 

where Cx~b and Cyyt denote the translational 

compliances in the directions of x and y, Cr162 
denotes the rotational compliance about the z 

axis, and Ss and Cs represent s in(rr  and cos 
(~r respectively. As shown in Eq. (49), the 

compliances in the translational directions are the 

same, and the translational component and the 

rotational component has the following relation- 

ship 

Cxx~ _ g(S~)  ~ (51) 
Cr162 2 

Also, similar relations hold for the second- and 

third minimum sets. Eqs. (52)-(54) and Eqs. 

(55)-(57) belong to the second and third mini- 

mum sets, respectively. 

Cxxm= C~ym= 3 (112+ g+2l~12C~) Cr (52) 

Cr162 3(lz13S] + lllaS~3)2 Cckm (53) 

C . . . .  2 ( lzl3S~ + [113S~3) 2 (54) 
Cr162 (112+ 12+2l~&Cd) 

Cxxt : Cyyt = 2  l~ (S~)~ ~ C~, (55) 

C r 1 6 2  = O 1  - -  1 2 C~t (56) 3 (&Sz + 13Sz~) 

and 

m 1 Cxx, _ 2 ( lzS2 + laS~3) z (57) 
Cr162 

It is observed from Eqs. (51), (54), and (57) 

that the compliance relations for the three differ- 

ent minimum sets are independent. This feature 

enables the system to create diverse compliance 
characteristics. 

2.3 Compliance model for the system with 
redundant joint compliances 

Here, we are interested in the independent 

control of the translational and rotational compli- 

ance components by utilizing redundant compli- 

ances. The stiffness matrices for the first, second, 

and third minimum sets (fib, ~,~, ~bt) are given as 

[K i l ]=  0 kz~i 0 , i = b ,  m, t (58) 
0 0 k3~i 

Provided that only small displacements are 

imposed on the system, the potential energy stored 

in the system is given by 

P.E.:�89 
1 

: ~ -  d u r ~ {  [G~]T[K,,][G~] }du (59) 
i=b 

1 
: ~ -  d u r [ K ~ ] d u  

where the stiffness matrix at the output location is 

defined by 

t 
i r  K i [ K z t u ] = i ~ b {  [~U] [ ii][GU] } (60) 

Assuming that the compliance matrix for each 

minimum set is diagonal and that the equivalent 

diagonal elements of the three compliance 

matrices have the same magnitude, then Eq. (60) 

can be represented as 

t 

[ K , , ] =  ~b{/ei[G~]T[G i] } (61) 

where 

t 3 
[KUU] ....... E k i E  [Gu]k,m[Gu]k,n' ' 

i=b k = l  

m, n = l ,  2, 3 (62) 

In particular, when the system maintains any 

symmetric configuration, the magnitude of the 

nondiagonal elements of [K~]  are all zero, and 

the magnitudes of the two translational compli- 

ance elements are identical(kxx=kyy). Using the 

inverse relationship between the stiffness element 

and compliance element, the output stiffness 

matrix can be related to the joint  compliance 

matrix as follows: 

K u - - [ B ] K r  (63) 

where 

Ku [1/Cxx 1/Cr162 r (64) 

K~ [1/C~b l/C~m I/Cr r (65) 

and 

[B]=r L C~/C~xo C~.,/Cxxra C~t/Cxxt ] (66) 
CcJ~/ Cr162 Cr Cc~(om Cr Cq~q~t J 

The general solution of  Eq. (63) is described 

by 

K r  ( [ I ] -  [B ]+ [B] ) r  (67) 

where [B] + represents the Moore-Penrose pseudo 

-inverse solution of [B]. The first term on the 
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right-hand side of Eq. (67) denotes a minimum 
norm solution, and the second term denotes a null 
-space solution, which does not influence the 
output stiffness, but can be utilized for developing 
additional secondary criteria. 

** " 

1 0,06 0.(( 
 ,o.8 

0.6 :l :+ 
0.4 
0.2: t - :g /  , 

0.5 1 1.5 
L2 
(a) 

In fact, stiffness modulation of K~ is possible 
just by considering any two sets out of the three 
minimum sets, in which case the dimension of  
matrix [B] is 2 • 2. 

2,4 Simulation 
Assuming that joint compliances are attached 

redundantly to all of the system joints, compli- 
ance characteristics at RCC points are analyzed 
through simulation. 

Assume that the base joint of a planar mecha- 
nism forms an equilateral triangle with lateral 

length 14= f3. Also consider a symmetric configu- 
ration at which the rotation angle (~b) about the 
z-axis is 0 ~ When the magnitudes of every joint 
compliances are given to be 1, and /1 is equal to 
1, Fig. 2(a) -- (c) represent the contours for out- 

1.4 

1.2 

1 
 ,o.8 

0.6 
0.4 
0.2 

++. "0. k20 " 

0.5 1 1.5 
L2 
(b) 

2 

i 0.25 i 

Cm 

1.4 

1.2 

~ 0 . 8  - J  

0.6 ~ , ~ ~ ,  

0.4 

0.2 , 

0.5 1 1.5 
1.2 
(c) 

Fig. 2 Output compliances wrt. Cr CCm, C,~, 
(a) Cxx (b) C~ (c) C~/Cx~ 

5 
~ . 6  

i '  i 

0.4 ..................... ~-..-r ...... 
,O.2' . . . . . . . .  

2 4 6 8 
Cm 

(b) 

Fig. 3 Output compiances wrt, C~/C#~ vs, Co,/C#~ 
(for C ~ =  1, 11=0.9, lz=0.8, l,--0.3) 

(a) C~  (b) C~, 
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Fig. 4 Joint compliances wrt. Cxx vs. Cr 
(a) C~b (b) C~,, (c) C~ 

put compliances with respect to the link lengths 12 

and /3. 
Also, consider a symmetric configuration with 

~b:0 ~ and Cob= 1. When the magnitudes of link 
length ll, 12, and /3 are given as 0.9, 0.8, and 0.3, 
respectively, Fig. 3 (a ) - -  (c) represent the con- 
tours for translational and rotational output com- 
pliance elements with respect to the joint compli- 
ances C0m and Cot. It is observed from Figs. 2 and 
3 that the output compliances are functions of 
link lengths and joint compliances. 

For a symmetric configuration with ~b:0 ~ and 
the same link lengths as in the case of Fig. 3, Fig. 
4 (a ) - - ( c )  represent the contours for the joint 

compliances Cob, C~m, and Cot (i. e., the first 
norm solution of Eq. (67)) with respect to the 
given translational and rotational output compli- 
ance elements. 

If the solution of Eq. (67) yields negative joint 
compliances, we neglect this region and only 
consider those regions in which all three joint 
compliances are positive, since negative compli- 
ance cannot be realized by physical springs. It is 
observed that the output compliance matrix is 
always positive-definite for a positive-definite 
joint compliance matrix, but the joint compliance 
matrix is not always positive-definite for a desir- 
ed positive-definite joint compliance matrix. 
Cutkosky and Kao also examined this fact in the 
stiffness analysis of multi-fingered hands (Cutkos- 
ky, et. al, 1989). 

3. Compliance Modulat ion by 
Redundant Actuat ion 

3.1 Analysis of stiffness created by antago- 
nistic actuation 

Ta and Tp represent the joint torque vectors for 
the independent joints and dependent joints, 
respectively. They are given by 

To = ( Tal Taz "" TaN) T (68) 

Tp = ( Tpl Tt~2 "'" TaN) ~ (69) 

The equilibrium equation expressed with 
respect to the minimum input coordinates is 
described by 
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T * =  Ta+[cg]rTp=O (70) 

where, T* denotes an effective load vector at the 
minimum input coordinates. A linearized form of 
Eq. (70) with respect to the equilibrium position 
is 

+ ~ -  ([ Gg] rTr) d ~  (71) 

where if [K~]  and [Kpp] are defined as the 
stiffness matrices at the independent and depen- 
dent ,coordinates, respectively, and [Kga] as an 
effective stiffness matrix in the independent coor- 
dinates, then 

c~T~ (72) 
[K=a] = 91t~ 

[Kpp] -  aTp (73) 

and 

[ K~ea ] = 8Ta* (74) 

The second term of the right hand-side of  Eq. 
(71) is given by 

a ([G~]rTp) = T# ~ r 

- [  Gg]r[ K,,][ Gg] (75) 

The, stiffness matrix corresponding to the first 
-term of the right-hand side of gq. (75) is given 
as follows: 

L r k = l  tYaNa 

where (T0)~ denotes the k ~h element of the vector 

To. Noting that the (i, j) element of the k eh plane 
of the: second-order influence coefficient matrix 
[Hg~] is defined as (Freeman, et. al., 1988) 

[ ~ 0 1  _ 0 [ ~ 1  (77) 

the (i, j) element of Eq. (76) can be expressed as 
(T,V)o([Hg~]):~,. Finally, the effective stiffness 
matrix expressed in terms of the independent 
coordinates is obtained as 

[K*a] = [ K ~ ] -  Tp r o[Hga] r 

+ [ G~]rE Koo][ G~] (78) 

where the first and third terms represent the 
stiffness matrices due to joint compliances 
attached to the independent and dependent coor- 
dinates, respectively, and the second term denotes 
the stiffness matrix created by antagonistic 
preloading between the independent coordinates 
and the dependent coordinates. 

It has been known (Yi, et. al., 1993) that the 
effective stiffness matrix in the output position is 
given in terms of [K~*a] 

/~. ~ r K.* G a [ ~ ] = [ G u ]  [ a~][ u] (79) 

where [G~] is equivalent to [G~] when the in- 
dependent coordinates are given as the first 
minimum set. 

3.2 Analysis of antagonistic stiffness at RCC 
point 

In this section, the characteristics of the antago- 
nistic stiffness created by antagonistic preloading 
are analyzed without consideration of  the joint 
compliance(or stiffness). Substituting the second 
-term of Eq. (78) into Eq. (79) yields 

[K~]  = [G~] r  ( -  TZo[H~]r)[G~] (80) 

Then, Eq. (80) is equivalently expressed as the 
following equation 

[K,*~] = - TIo ([G~]r[H2~][G~]) (81) 

where Tp satisfies the static equilibrium (Eq, 
(70)), 

[K*~] has 6 independent stiffness elements due 
to its symmetry. When [K*~] is given by 

I kx  1 
[K2~] = k,:, k,y kyr / (82) 

k~x k~y k, ,  ] 

the six off-diagonal elements of  [K~*] should be 
all zero to satisfy the condition for RCC point. 
The (rn, n) element of Eq. (81) can be expressed 

by 

[ts -[[G,~]r[Hg~][G~]]:,~{ T, } (83) 

Yi and Freeman(t993) derived necessary con- 
ditions for stiffness modulation by antagonistic 
preloading in general redundantly actuated sys- 
tems (refer to Appendix 2). According to those 
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conditions, a planar system with three kinematic 
closed-loop chains has only two independent 
loops, and since each loop has two nonholonomic 
constraint equations in the planar mechanism, the 
system has 4 independent nonholonomic con- 
straint equations, which allows modulation of the 
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6 
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0 
0 5 10 

Kxx 
(a) 
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6 O,, 
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0 
0 5 10 

Kxx 

(b) 

oL/ / l  / 
0 

p.s 
5 10 

Kxx 
(c) 

Fig. 5 Torque: (a) Tb=T,~ (b) Tn (e) Tt 

same number of stiffness elements. Therefore, 
only four out of six stiffness elements can be 
controlled independently. 

While Yi and Freeman (1993) have considered 
general workspaces, here only a symmetric config- 
uration is considered. It is numerically verified 
that in cases of symmetric configurations of  the 
given planar mechanism, two out of three non- 
diagonal elements are independent and the other 
one has a dependent relation. Once two non- 
diagonal elements are zero, the other one becomes 
zero automatically. Also, in symmetric configura- 
tions, kxx is always equivalent to kw. Therefore, 
we only need to control four stiffness elements 
(kxy, kxr kxx, kr162 The relation between the four 
stiffness elements and the torque is expressed in 
the following matrix 

I a T p a kxx ([Gu] [H~a][G~]);,, 
a T P a kr162 = - -  ([G~] [H~a][Gu]);33 
a T P a kxy ([G~] [H~][G~]):,2 T; (84) 
a T P a kxr ([C~] [ H ~ ] [ G ~ ] ) : .  

Equation (70) can be expressed in the follow- 
ing matrix form 

[[I]3• [Gg] T] T,=03x, (85) 

where 

T~,=[ TJ Tt~q r (86) 

Combining Eqs. (84) and (85) results in 

y = [ D ] T  (87) 

where 

y=[kxx k~r kxy kxr 0 0 0] r (88) 

and the matrix [D] with dimension 7 • 9 is given 
by 

[D] = 
a r  H p a l 

( [Gu]  [ a a ] [ G u ] ) : l ,  

a T  H p a ([Gu] [ ao][G~])~,, 
04•  ([G~]a T[H~.][G~])~,2p a 

a T P a ([G.]  [H~a][G~]);,3 4x6 
[I]3• [Gg]T3• 

(89) 

In Eq. (88), kxy=0, kxr and kxx and kr162 are 
set to arbitrary values. Then, the solution of T 
from Eq. (87) is described by 

T=[  D ]+ y + ( I -  D+ D ) r (90) 

where [D] + denotes the Moore Penrose pseudo 
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-inverse of [D], and the first term of  Eq. (90) 
repre,;ents a minimum norm solution, and the 
second-term represents a null-space solution that 
can be utilized for stiffness modulation and other 
purposes. When all the link lengths of the mecha- 
nism are given as 0.5, and the magnitudes of kxy 
and kxr are set to zero, Fig. 5 (a), 5 (b), and 5 (c) 
represent the contours for T~, T,,, and Tt with 
respect to kxx and kr162 when only the minimum 
norm solution of Eq. (90) is considered. 

4. Conclusions 

Currently existing RCC devices are made of 
compliant passive structures, and thus they cannot 
adjust the magnitude of their compliances accord- 
ing to various task conditions (Whitney, 1986). 

In this work, we investigate different types of 
RCC devices employing the structure of parallel 
mechanisms in order to obtain adjustable RCC 
characteristics. In our previous work, we verified 
that when three identical joint compliances are 
attached to the three base joints of  the mechanism, 
an RCC point exists at the center of  the ternary of  
the mechanism in its symmetric configurations, 
and that the magnitudes of  two translational 
comptiances are the same at an RCC point 
regardless of the magnitude of link lengths and 
joint compliances, and that the rotational compli- 
ance has some functional relation with the trans- 
lational compliance~ However, when employing a 
minimum number of (three) joint compliances, 
the translational and rotational compliances at 
the output (RCC) position cannot be indepen- 
dently controlled. Therefore, we suggest two 
methods for independent control of the trans- 
lational and rotational compliances, by employ- 
ing redundant joint compliances or redundant 
actuators. In the first approach, adaptable RCC 
characteristics are achieved purely by attaching 
different magnitudes of  passive or decoupled feed- 
back compliances to each minimum set. In the 
second approach, they are achieved by antagonis- 
tic redundant actuation among system actuators. 

We conclude that redundancies of joint compli- 
ance or actuator play an important role in the 
modulation of  the output compliance matrix. The 

completely decoupled compliance matrix at an 
RCC point is important for independent control 
of  each direction at the given task position of 
robot manipulators. The basic theory of this 
paper will be applicable to the analysis of compli- 
ance characteristics of  diverse parallel mecha- 
nisms. 
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Appendix 1 

Operator 'o'  is called the generalized dot prod- 

uct and is defined as follows: let A and B repre- 

sent a p • q matrix and a three-dimensional q • 

( m •  n) array. The resulting p •  ( m •  n) array C 

is obtained as 
a 

Cp~ : [ A ~ B]pi~= Z ApkBko" 
k = l  

Appendix 2 

Necessary Condit ion for Full  Stiffness Genera- 

tion in Redundantly Actuated Parallel Mecha- 

nisms 

A closed-chain mechanism is capable of full 

stiffness generation only if it satisfies 

J a ~ D + M  

where 

D: number of independent stiffness elements 

( = M ( M + I ) / 2 )  
M: degrees of  freedom(system mobility) 

Ja: number of active joints 

and 

N C  = ( I C -  L C )  > D 

where 

IC: number of  independent constraint equa- 

tions 

NC: number of dependent constraint equations 

LC: number of independent linear constraint 

equations. 


